

Communication

Formation of Dimers That Contain Unbridged W(IV)/W(IV) Double Bonds

Lourdes Pia H. Lopez, and Richard R. Schrock

J. Am. Chem. Soc., 2004, 126 (31), 9526-9527• DOI: 10.1021/ja0400988 • Publication Date (Web): 16 July 2004

Downloaded from http://pubs.acs.org on April 1, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 6 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 07/16/2004

Formation of Dimers That Contain Unbridged W(IV)/W(IV) Double Bonds

Lourdes Pia H. Lopez and Richard R. Schrock*

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received April 5, 2004; E-mail: rrs@mit.edu

Certain molybdenum alkylidene complexes of the type Mo(NR)-(CHR')(OR'')₂ (or metalacyclobutane complexes derived from them) have been shown to decompose to yield dimeric species, e.g. [Mo-(μ -NAr)(O-t-Bu)₂]₂ (Ar = 2,6-*i*-Pr₂C₆H₃), which contains a symmetric, planar Mo₂N₂ core and a pseudotetrahedral arrangement about each Mo.¹ It has been assumed that tungsten complexes of the same general type also contain bridging imido groups.² In this communication we show that new tungsten imido alkylidene complexes of the type W(NR)(CH-*t*-Bu)(CH₂-*t*-Bu)(OC₆F₅) decompose to yield dimeric species that contain *unbridged* W=W double bonds. Such species are closely related to two compounds of the type [Re(C-*t*-Bu)(OR)₂]₂ (OR = O-*t*-Bu or OCMe(CF₃)₂),³ which also contain "unsupported" M=M bonds and are formed upon decomposition of alkylidene complexes of the type Re(C-*t*-Bu)(CHR')(OR)₂ (R' = OEt or OSiMe₃).³

Recently, we showed that active olefin metathesis catalysts of the type Mo(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)(OR) (Ar = 2,6-*i*-Pr₂C₆H₃) can be prepared by adding a variety of alcohols to Mo(NAr)(CH*t*-Bu)(CH₂-*t*-Bu)₂.⁴ Therefore we became interested in exploring analogous reactions involving W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)₂.² A three-step synthesis of W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)₂ that is more convenient than the reported² six-step synthesis (from WCl₆) is shown in eq 1.⁵ Sterically crowded W(NAr)(CH₂-*t*-Bu)₄, shown

arbitrarily as a trigonal bipyramidal species, is believed to be the intermediate that undergoes α hydrogen abstraction^{6,7} to produce W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)₂ (cf. W(NPh)(CHSiMe₃)(CH₂SiMe₃)₂⁸). W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)₂, prepared as shown in eq 1, has been obtained only as a red-brown oil. However, addition of three equivalents of *t*-BuCH₂MgCl to W(NAr)Cl₄ yields W(NAr)(CH₂-*t*-Bu)₃Cl cleanly (cf. W(NPh)(CH₂-*t*-Bu)₃Cl⁸), which can be isolated and alkylated with LiCH₂-*t*-Bu to yield W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)₂ virtually quantitatively as an orange solid.

Addition of C₆F₅OH to W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)₂ (~0.1 M) in C₆D₆ at 25 °C rapidly yields W(NAr)(CH₂-*t*-Bu)₃(OC₆F₅) (δ_{CH_2} = 2.25 ppm), which can be isolated as a yellow powder.⁹ A similar reaction between (CF₃)₃COH and W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)₂ in pentane at 25 °C yields yellow crystalline W(NAr)(CH₂-*t*-Bu)₃-[OC(CF₃)₃] (δ_{CH_2} = 2.20 ppm in C₆D₆). Species of this type are believed to have trigonal bipyramidal structures in which the alkoxide is in an apical position. They should be compared with known W(NPh)(CH₂-*t*-Bu)₃(O-*t*-Bu) (δ_{CH_2} = 1.94 ppm).⁸

In contrast, addition of one equivalent of 1-adamantanol to $W(NAr)(CH-t-Bu)(CH_2-t-Bu)_2$ in pentane yields $W(NAr)(CH-t-Bu)-(CH_2-t-Bu)(OAd)$ as a yellow powder (in C₆D₆ $\delta_{CH} = 8.86$ ppm, $J_{HW} = 14.5$ Hz; $\delta_{CH} = 253.1$ ppm, $J_{CH} = 110$ Hz). By analogy with similar reactions between Mo(NAr)(CH-t-Bu)(CH_2-t-Bu)_2 (and

related neophyl and neophylidene species) and adamantanol,⁴ $W(NAr)(CH-t-Bu)(CH_2-t-Bu)(OAd)$ is proposed to arise as a consequence of addition of adamantanol across a W–C bond.

Upon heating solutions of $W(NAr)(CH_2-t-Bu)_3(OC_6F_5)$ or W(NAr)(CH₂-t-Bu)₃[OC(CF₃)₃], neopentane is evolved, and W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)(OC₆F₅) ($\delta_{CH} = 9.29$ ppm, $J_{HW} = 15$ Hz) and W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)[OC(CF₃)₃] ($\delta_{CH} = 9.39$ ppm, $J_{\rm HW} = 15$ Hz) are formed. Plots of log[W(NAr)(CH₂-t-Bu)₃(OR)] versus time at 60 °C are linear. When $OR = OC_6F_5$, $k = 7.0 \times$ 10^{-5} s^{-1} , while when OR = OC(CF₃)₃ k = $1.7 \times 10^{-4} \text{ s}^{-1}$. Neither W(NAr)(CH-t-Bu)(CH2-t-Bu)(OC6F5) nor W(NAr)(CH-t-Bu)(CH2t-Bu)[OC(CF₃)₃] has been isolated in crystalline form, the latter because it has so far resisted all attempts to crystallize it, and the former because it, unlike Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅),⁴ is unstable with respect to bimolecular decomposition (see below). NMR studies suggest that all W(NAr)(CH-t-Bu)(CH₂-t-Bu)(OR) compounds (OR = OC_6F_5 , $OC(CF_3)_3$, or OAd) are syn species in which the neopentylidene's tert-butyl group points toward the imido ligand;^{6,7} no alkylidene H_{α} resonances for *anti* isomers have been observed.

Although W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)[OC(CF₃)₃] and W(NAr)-(CH-*t*-Bu)(CH₂-*t*-Bu)(OAd) are relatively stable in solution at 80 °C, W(NAr)(CH-*t*-Bu)(CH₂-*t*-Bu)(OC₆F₅) (formed by heating a 0.1 M solution of W(NAr)(CH₂-*t*-Bu)₃(OC₆F₅) to 80 °C in toluene-*d*₈) begins to decompose after ~80% of it has formed from W(NAr)-(CH₂-*t*-Bu)₃(OC₆F₅). The only observable products are *t*-BuCH= CH-*t*-Bu (one isomer, presumably trans) and sparingly soluble "W(NAr)(CH₂-*t*-Bu)(OC₆F₅)." Two doublet resonances (*J*_{HH} = 14.5 Hz) are found for the neopentyl methylene protons at 2.47 and 3.09 ppm in the proton NMR spectrum of "W(NAr)(CH₂-*t*-Bu)(OC₆F₅)", consistent with an absence of a plane that passes through the neopentyl methylene carbon atom.

An X-ray study reveals that sparingly soluble "W(NAr)(CH2-t-Bu) (OC_6F_5) " is a centrosymmetric (heterochiral) dimer (Figure 1) in which there are no bridging ligands and a double bond (2.4445-(3) Å) between the two tungstens. Among the striking features of the structure is a N-W-W angle close to 90° (90.38(10)°). The W-N bond length (1.749(3) Å) and W-N-C angle (165.5(3)°) are not unusual. The W-C(19)-C(20) angle $(119.3(3)^\circ)$ is typical of a relatively "undistorted" neopentyl group, while the W-O(1)-C(13) angle (146.7(3)°) suggests that a significant degree of π bonding is present, which opens the W–O–C angle significantly. This structure is similar to the structures of two related d²/d² [Re- $(C-t-Bu)(OR)_2]_2$ (OR = O-t-Bu or OCMe(CF_3)_2) species³ in which the Re=Re bond lengths are 2.3836(8) and 2.396(1) Å (respectively), the C=Re=Re angles are $90.0(2)^{\circ}$ and $89.5(1)^{\circ}$ (respectively), and the alkylidyne ligands are trans to one another. The shapes of the W (and Re) compounds suggest that three mutually perpendicular π bonds are formed from the d_{xz}, d_{yz}, and d_{xy} orbitals, with the four σ bonds being formed from the three p orbitals and some combination of s and d_{z²} orbitals.¹⁰ The transoid arrangement of the multiply bound alkylidyne ligands in the Re complexes was

Figure 1. Chem3D drawing of the structure of centrosymmetric [W(NAr)- $(CH_2-t-Bu)(OC_6F_5)]_2$. (W-N = 1.749(3) Å, W-O = 1.933(2) Å, W-C = 1.933(2)2.139(3) Å, W-W# = 2.4445(3) Å, $W-N(1)-C(1) = 165.5(3)^\circ$, $W-O(1)-C(1) = 165.5(3)^\circ$ $C(13) = 146.7(3)^{\circ}, W-C(19)-C(20) = 119.3(3)^{\circ}, N(1)-W-W\# = 90.38$ $(10)^{\circ}$, $O(1)-W-W\# = 113.17(9)^{\circ}$, $C(19)-W-W\# = 98.08(10)^{\circ}$, $N(1)-W^{\circ}$ $W-O(1) = 132.30(13)^\circ, N(1)-W-C(19) = 106.23(15)^\circ, O(1)-W-C(19)$ $= 110.31(14)^{\circ}$).

found to be energetically preferred in theoretical studies of model compounds.¹⁰

The reaction between $W(NAr')(CH-t-Bu)(dme)(triflate)_2$ (Ar' = 2,6-Me₂C₆H₃)¹¹ and two equivalents of *t*-BuCH₂MgCl yields W(NAr')(CH-t-Bu)(CH₂-t-Bu)₂ as an orange powder, which upon treatment with pentafluorophenol yields W(NAr')(CH2-t-Bu)3- (OC_6F_5) quantitatively. Upon heating a toluene- d_8 solution (0.10 M) of W(NAr')(CH₂-t-Bu)₃(OC₆F₅) to 60 °C, W(NAr')(CH-t-Bu)-(CH₂-t-Bu)(OC₆F₅) forms and decomposes to yield t-BuCH=CHt-Bu and sparingly soluble [W(NAr)(CH₂-t-Bu)(OC₆F₅)]₂. On the basis of the inequivalent neopentyl methylene protons in the proton NMR spectrum of $[W(NAr)(CH_2-t-Bu)(OC_6F_5)]_2$ in toluene-d₈ we propose that this compound also contains an unsupported W=W bond. W(NAr')(CH₂-t-Bu)₃(OC₆F₅) evolves neopentane intramolecularly more slowly than W(NAr)(CH₂-t-Bu)₃(OC₆F₅), while intermediate W(NAr')(CH-t-Bu)(CH₂-t-Bu)(OC₆F₅) decomposes bimolecularly more quickly than intermediate W(NAr)(CH-t-Bu)- $(CH_2-t-Bu)(OC_6F_5)$ at the concentrations employed. Both can be ascribed to subtle steric differences between the NAr and NAr' groups.

It has been reported that unstable W(CHEt)(NAr')[OCMe-(CF₃)₂]₂, which is prepared by treating W(CH-t-Bu)(NAr')[OCMe-(CF₃)₂]₂ with cis-3-hexene, decomposes to yield {W(NAr')[OCMe-(CF₃)₂]₂².² It was proposed that {W(NAr')[OCMe(CF₃)₂]₂}₂ contains bridging imido ligands, although the presence of two inequivalent trifluoromethyl groups in the carbon NMR spectrum of {W(NAr')- $[OCMe(CF_3)_2]_2$ is inconsistent with a structure analogous to that of $[Mo(\mu-NAr)(O-t-Bu)_2]_2$ (Ar = 2,6-*i*-Pr₂C₆H₃).¹ We have shown that W(CH-t-Bu)(NAr')[OCMe₂(CF₃)]₂ also reacts with cis-2pentene to yield {W(NAr')[OCMe2(CF3)]2}2 in which the two methyl groups in the trifluoro-tert-butoxide are inequivalent (with resonances at 1.27 and 1.92 ppm in toluene- d_8). Therefore, we suspect that $\{W(NAr')[OCMe(CF_3)_2]_2\}_2$ and $\{W(NAr')[OCMe_2-$ (CF₃)]₂}₂ also contain unsupported W=W bonds. (No X-ray study of either species has yet been successful.)15

Finally, we recently found that Mo(NAr)(CH-t-Bu)(CH₂-t-Bu)- (OC_6F_5) ,⁴ which is much more stable than W(NAr)(CH-t-Bu)- $(CH_2-t-Bu)(OC_6F_5)$, will react with 10 equiv of *trans*-3-hexene at 25 °C to yield [Mo(NAr)(CH₂-t-Bu)(OC₆F₅)]₂, which was shown in an X-ray study to be a homochiral molecule related to [W(NAr)-(CH₂-t-Bu)(OC₆F₅)]₂ (Figure 1).¹⁴ Therefore unsupported M=M bonds are not restricted to W and Re.

To the best of our knowledge, no Mo or W dimers are known that contain "unsupported" M=M bonds in the presence of potentially bridging ligands. (See also discussion in refs 3 and 10.) These species are strikingly different from a compound such as $[W(OCH_2-t-Bu)_4]_x$, a polymeric species that contains bridging neopentoxides.13 We are now in the process of expanding the library of synthetically accessible M=M species and exploring their fundamental reactions.

Acknowledgment. We thank the National Science Foundation (CHE-0138495) for supporting this research and D. Yandulov for assistance in refining the crystal structure.

Supporting Information Available: Experimental details, labeled thermal ellipsoid drawing, crystal data and structure refinement, atomic coordinates, bond lengths and angles, and anisotropic displacement parameters for [W(NAr)(CH2-t-Bu)(OC6F5)]2. X-ray crystallographic data in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Robbins, J.; Bazan, G. C.; Murdzek, J. S.; O'Regan, M. B.; Schrock, R. R. Organometallics **1991**, 10, 2902–2907.
- Schrock, R. R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang, D. C.; Davis, W. M.; Park, L. Y.; DiMare, M.; Schofield, M.; Anhaus, J.; Walborsky, E.; Evitt, E.; Krüger, C.; Betz, P. Organometallics **1990**, *9*, $2262 - 22^{2}$
- (3) Toreki, R.; Schrock, R. R.; Vale, M. G. J. Am. Chem. Soc. 1991, 113, 3610-3611.
- (4) Sinha, A.; Schrock, R. R. Organometallics 2004, 23, 1643-1645.
- (5) The feasibility of this approach was first demonstrated by A. Sinha with t-BuCH₂MgCl; this reaction mixture tends to contain a significant quantity of W(NAr)(CH2-t-Bu)3Cl.
- (6) Schrock, R. R., Ed. Reactions of Coordinated Ligands; Plenum: New York, 1986.
- (7) Feldman, J.; Schrock, R. R. Prog. Inorg. Chem. 1991, 39, 1–73.
 (8) Pedersen, S. F.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 7483–
- 7491
- (9) Preparative scale reactions were carried out in pentane.
- (10) Barckholtz, T. A.; Bursten, B. E.; Niccolai, G. P.; Casey, C. P. J. Organomet. Chem. 1994, 478, 153–160.
- (11) This species was prepared by a method analogous to that employed to prepare W(NAr)(CH-t-Bu)(dme)(triflate)2; see Supporting Information for details.
- (12) Tsang, W. C. P.; Hultzsch, K. C.; Alexander, J. B.; Bonitatebus, P. J. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2652-2666.
- (13) Chisholm, M. H.; Streib, W. E.; Tiedtke, D. B.; Wu, D. D. Chem. Eur. J. **1998**. 4. 1470-1479.
- A. Sinha: unpublished results to be reported in due course.
- (15) Note added in proof: An X-ray structure of the latter has confirmed a structure that is, overall, similar to that shown in Figure 1 and that contains an unbridged W=W bond 2.4905(3) Å long.

JA0400988